

Module V: Robotics

1. Robot Configurations: Serial and Parallel

- **Serial Robots:** Feature joints and links in a single chain; commonly seen as industrial robot arms. Key advantages include flexibility, extended reach, and ability to navigate complex environments. Typical applications: assembly, welding, painting, and polishing [\[1\]](#) [\[2\]](#).
- **Parallel Robots:** Comprise multiple arms that connect a single end-effector to a base. They offer higher rigidity, precision, speed, and load-bearing capacity but have a more limited working envelope. Used in high-speed pick-and-place, CNC machining, 3D printing, and precision applications like packaging and sorting [\[1\]](#) [\[3\]](#) [\[4\]](#).

Feature	Serial Robots	Parallel Robots
Structure	Chain-like, single arm	Multiple arms/legs
Flexibility	High	Moderate
Precision	Lower	High
Load Capacity	Limited	High
Speed	Moderate	Very high
Applications	Welding, assembly	Pick & place, machining

2. Denavit–Hartenberg Parameters

- **Purpose:** A systematic method to represent robot manipulator link geometry and joint relationships.
- **Parameters:** Each robotic joint is described by four parameters:
 - $\$ a_i \$$ (link length)
 - $\$ \alpha_i \$$ (link twist)
 - $\$ d_i \$$ (link offset)
 - $\$ \theta_i \$$ (joint angle)
- **Usage:** These parameters define transformation matrices between successive coordinate frames, facilitating kinematic analysis [\[5\]](#) [\[6\]](#).

3. Manipulators Kinematics

- **Kinematics** concerns motion analysis disregarding forces.
 - **Forward Kinematics (FK)**: Determines the end-effector position and orientation from given joint parameters.
 - **Inverse Kinematics (IK)**: Calculates required joint parameters to achieve a desired end-effector position and orientation. IK is generally more complex than FK, often requiring numerical solutions or iterative algorithms^{[7] [8] [9]}.

Example Equations for a 2-link Planar Arm (Forward Kinematics):

$$X_e = L_1 \cos \theta_1 + L_2 \cos(\theta_1 + \theta_2)$$

$$Y_e = L_1 \sin \theta_1 + L_2 \sin(\theta_1 + \theta_2)$$

4. Rotation Matrix and Homogeneous Transformation Matrix

- **Rotation Matrix (R)**:
 - A 3×3 matrix expressing orientation of a frame relative to another.
- **Homogeneous Transformation Matrix (T)**:
 - A 4×4 matrix combining rotation and translation.
 - General Form:

$$T = \begin{bmatrix} R & p \\ 0_{1 \times 3} & 1 \end{bmatrix}$$

where R is the rotation matrix, p is a translation vector^{[10] [11]}.

5. Robot Position & Orientation: Direct and Inverse Kinematics

- **Direct (Forward) Kinematics**: Uses D-H parameters to transform joint parameters into a position and orientation (via homogeneous transformation matrices).
- **Inverse Kinematics**: Uses desired position/orientation to compute joint values; solutions may not be unique and sometimes might not exist^{[7] [8] [9]}.

6. Workspace Estimation and Path Planning

- **Workspace**: The total volume reached by a robot's end-effector.
- **Estimation**: Determined via kinematic equations and physical constraints of the manipulator or robot.
- **Path Planning**: Algorithms generate collision-free, optimal paths from a start to a goal configuration, considering obstacles and movement constraints. Solutions ensure feasible, safe, and efficient robot trajectories^{[12] [13]}.

7. Robot Vision

- **Definition:** Robots equipped with cameras, sensors, and algorithms that interpret visual data for environment interaction.
- **Components:**
 - Cameras/sensors (2D/3D)
 - Lighting systems
 - Image processing (object detection, recognition)
 - AI/machine learning for adaptive decision-making
- **Applications:** Inspection, quality control, object sorting, component identification, location tracking, and guidance for pick and place operations [\[14\]](#) [\[15\]](#).

8. Motion Tracking

- **Concept:** Determining and analyzing the movement path of objects or robot parts, typically through visual or sensor-based tracking.
- **Types:**
 - 2D tracking: Tracks objects in image coordinates.
 - 3D motion capture: Reconstructs position, orientation, and trajectory in space [\[16\]](#) [\[17\]](#).
- **Techniques:** Feature detection, predictive algorithms, neural networks for robust multi-object tracking in dynamic environments [\[16\]](#).

9. Robot Programming and Control

- **Programming Methods:**
 - Teach pendant: Manually guiding the robot through desired motions.
 - Off-line programming: Writing code or using graphical interfaces to define motions.
 - Direct positional commands: Setting target coordinates for movement [\[4\]](#).
- **Control:** Closed-loop (sensor-based feedback) and open-loop (predefined path) strategies ensure precise robot motion, stability, and safety.

10. Industrial Robots: Applications

- **Pick and Place:** High-speed, repetitive, or precise object transfer in assembly lines (common with parallel robots).
- **Sorting:** Classification based on size, color, barcode/QR code, etc.
- **Assembly:** Automated building of products from parts; requires flexibility and accuracy (serial robots often used).
- **Welding:** Automated, consistent joining of materials, improving speed and safety.
- **Inspection:** Optical inspection for defects via robot vision; critical in quality assurance.
- **Additional:** Polishing, painting, machining, packaging, and laboratory tasks [\[1\]](#) [\[3\]](#) [\[4\]](#) [\[14\]](#) [\[15\]](#).

This overview captures the fundamental elements of Module V: Robotics, including theoretical frameworks and industrial applications based on current robotics practices and standards.

**

1. <https://www.flexiv.com/news/understanding-the-differences-between-parallel-and-serial-robots>
2. <https://library.fiveable.me/robotics/unit-5/serial-parallel-manipulator-architectures/study-guide/oVMezGtyWk3Nv2ld>
3. <https://acrome.net/post/introduction-to-robotic-manipulators>
4. <https://www.plantautomation-technology.com/articles/types-of-robots-based-on-configuration>
5. https://people.bu.edu/johnb/740_L15.pdf
6. <https://www.slideshare.net/HiteshMohapatra/denavit-hartenberg-algorithm>
7. <https://www.mathworks.com/help/symbolic/derive-and-apply-inverse-kinematics-to-robot-arm.html>
8. <https://blogs.mathworks.com/student-lounge/2018/04/11/robot-manipulation-part-1-kinematics/>
9. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3075487
10. <https://www.youtube.com/watch?v=Lh-S9Skd4yE>
11. <https://www.mathworks.com/help/releases/R2021a/nav/ref/rotm2tfm.html>
12. <https://arxiv.org/pdf/2206.08337.pdf>
13. [https://repository.gatech.edu/server/api/core/bitstreams/04bc8fda-16c2-4b17-bdf6-efaa7e566c33/conten](https://repository.gatech.edu/server/api/core/bitstreams/04bc8fda-16c2-4b17-bdf6-efaa7e566c33/content)
14. <https://www.wiredworkers.io/blog/robot-vision-how-does-it-work-and-what-can-you-do-with-it/>
15. <https://electronics360.globalspec.com/article/21964/advanced-robotic-vision-systems-a-game-changer-for-precision-tasks>
16. <https://pubmed.ncbi.nlm.nih.gov/39089149/>
17. <https://help.maxon.net/c4d/en-us/Content/html/52788.html>